
Scanning Applications 2.0
Next generation scan, attacks

and tools

Shreeraj Shah
Washington DC

20th Feb 2008

Who Am I?
• Founder & Director

– Blueinfy Solutions Pvt. Ltd. (Brief)
– SecurityExposure.com

• Past experience
– Net Square, Chase, IBM & Foundstone

• Interest
– Web security research

• Published research
– Articles / Papers – Securityfocus, O’erilly, DevX, InformIT etc.
– Tools – wsScanner, scanweb2.0, AppMap, AppCodeScan, AppPrint etc.
– Advisories - .Net, Java servers etc.

• Books (Author)
– Web 2.0 Security – Defending Ajax, RIA and SOA
– Hacking Web Services
– Web Hacking

http://shreeraj.blogspot.com
shreeraj@blueinfy.com
http://www.blueinfy.com

http://shreeraj.blogspot.com
shreeraj@blueinfy.com
http://www.blueinfy.com

Agenda
• Web 2.0 State – Trends, Challenges and

Architecture
• Web 2.0 Fingerprinting and Discovery
• Crawling Web 2.0 applications
• Web 2.0 Scan – Attacks, Vulns. and Tools
• Web 2.0 Components and Security – RSS,

Mashups, Blogs etc.
• SOA – Scanning and Vulnerabilities
• Code Reviews and WAF for Web 2.0
• Conclusion

Web 2.0
Architecture, Changes

and Challenges

Moving to Web 2.0

Web 2.0 State

• 80% of companies are investing in Web
Services as part of their Web 2.0 initiative
(McKinsey 2007 Global Survey)

• By the end of 2007, 30 percent of large
companies have some kind of Web 2.0-based
business initiative up and running.
(Gartner)

• 2008. Web Services or Service-Oriented
Architecture (SOA) would surge ahead.
(Gartner)

Web 2.0 – Application of Applications

Widget DOM
HTML/CSS JavaScript

SOAP
XML-RPCJSON

XML

Open APIs
SaaS

Services
REST

Browser Protocols

Web 2.0 Application Layers

Ajax Flash / RIA
JSON-RPC

Structures Server-Side

HTTP(S)

Web 2.0 Security State

• Complex architecture and confusion
with technologies

• Web 2.0 worms and viruses – Sammy,
Yammaner & Spaceflash

• Ajax and JavaScripts – Client side
attacks are on the rise (XSS/CSRF)

• Web Services attacks and exploitation
• Flash clients are running with risks

Real Life Cases

Adding filte
r through CSRF

Loading js file through flash from scrapbook

Attacking blogs and boards

XSS through RSS feed

Flash components

HTTP Response Splitting

Source: The Web Hacking Incidents Database
[http://webappsec.org/projects/whid/]

Web 2.0 Application Case

• XSS in Ajax routine was discovered.
• Blog is in fashion for Web 2.0 applications

and is having several XSS.
• CSRF was possible through JSON stream.

(content-type check)
• Information disclosure during JSON fuzzing

[Internal information].
• SQL injection over XML pipe.
• Logical bug from client side.

Changes & Challenges

• Application Infrastructure

Multiple sources (Urge for
integrated information
platform)

Single place information
(No urge for
integration)

(AI4) Information
sharing

Asynchronous & Cross-
domains (proxy)

Synchronous
Postback
Refresh and Redirect

(AI3) Communication
methods

XML, JSON, JS Objects etc.HTML transfer (AI2) Information
structures

SOAP, XML-RPC, REST etc.
over HTTP & HTTPS

HTTP & HTTPS(AI1) Protocols
Web 2.0Web 1.0Changing dimension

Changes & Challenges

• Security Threats

Both server and client side
exploitation

Server side exploitation (T4) Exploitation

• Web services [Payloads]
• Client side [XSS & XSRF]

Server side [Typical
injections]

(T3) Vulnerabilities

• Multiple technologies
• Information sources
• Protocols

Limited(T2) Dependencies

Scattered and multipleStructured(T1) Entry points

Web 2.0Web 1.0Changing dimension

Changes & Challenges
• Methodology

Client-side analysis neededFocus on server-side onlyCode reviews

Client-side with Ajax & FlashOn the server-side
[Difficult]Reverse engineering

Difficult with Ajax and web
servicesEasy after discoveryAutomated attacks

Difficult with extensive AjaxStructured and simpleScanning

Several streamsStructuredEnumeration

Difficult with hidden callsSimple Discovery

Empowered with searchTypical with "Host" and
DNSFootprinting

Web 2.0Web 1.0Changing dimension

Changes & Challenges
• Countermeasure

Multiple places and
scatteredStructured and single placeSecure coding

Client side shiftOnly on serverLogic shift

Client side [incoming
content]Server sideValidations

Complex DOM usageSimple DOM usageBrowser security

Multiple places [Mashups &
RSS]Single place

Owner of
information

Web 2.0Web 1.0Changing dimension

Web 2.0
Fingerprinting & Discovery

Application Server Fingerprinting

• Identifying Web and Application servers.
• Forcing handlers to derive internal

plugin or application servers like Tomcat
or WebLogic.

• Looking for Axis or any other Web
Services container.

• Gives overall idea about infrastructure.

Demo

Ajax/RIA call

• Asynchronous JavaScript and XML

HTML / CSS / Flash

JS / DOM

XMLHttpRequest (XHR)

Database / Resource

XML / Middleware / Text

Web Server

Asynchronous
over HTTP(S)

Ajax/RIA call

Ajax/RIA call

Fingerprinting

• Ajax based frameworks and identifying
technologies.

• Running with what?
– Atlas
– GWT
– Etc.

• Helps in identifying weakness of the
application layer.

• Good idea on overall application usage.

Demo

Fingerprinting

• Fingerprinting RIA components running
with Flash.

• Atlas script discovery and hidden entry
points identification.

• Scanning for other frameworks.

Demo

RIA fingerprints

Atlas framework discovery

Discovery

• Ajax running with various different structures.
• Developers are adding various different calls

and methods for it.
• JavaScript can talk with back end sources.
• Mashups application talking with various

sources.
• It has significant security impact.
• JSON, Array, JS-Object etc.
• Identifying and Discovery of structures.

Demo

Discovery

Demo

JSON

XML JS-Script

JS-Array
JS-Object

Web 2.0
Crawling

Crawling challenges

• Dynamic page creation through
JavaScript using Ajax.

• DOM events are managing the
application layer.

• DOM is having clear context.
• Protocol driven crawling is not possible

without loading page in the browser.

Ajax driven site

Demo

Crawling with Ruby/Watir

Web 2.0
Scanning & Vulnerabilities

Cross Site Scripting (XSS)

• Traditional
– Persistent
– Non-persistent

• DOM driven XSS – Relatively new
• Eval + DOM = Combinational XSS with

Web 2.0 applications

Cross Site Scripting (XSS)

• What is different?
– Ajax calls get the stream.
– Inject into current DOM using eval() or any

other means.
– May rewrite content using document.write

or innerHTML calls.
– Source of stream can be un-trusted.
– Cross Domain calls are very common.

Addressing Cross Domain Calls

• Cross Domain calls are very important
for Web 2.0 applications.
– Proxy to talk with cross domain
– Callback implementation to fetch them
– Flash via crossdomain.xml

• These are types of bypass and can
have security implications

• Source of the information – key!

Cross Domain with proxy

Callback Implementation

• Portals like yahoo and google are supporting this.
• Possible to bypass the SOP and make Cross Domain Calls
• Security at stake [Browser layer]

Scenario
Blog

DB
attacker

Web app

Web app

proxy

Web
Client

8008

JSON

eval()

XSS

Posting to the site
[Malicious code]

JSON
feed

Web
Server

Vulnerable stream coming
through proxy

Hijack

XSS with JSON stream

Demo

XSS with RIA

• Applications running with Flash
components

• getURL – injection is possible
• SWFIntruder
• Flasm/Flare
(http://www.nowrap.de/)

Scanning for XSS
• Scanning Ajax components
• Retrieving all JS include files

– Part of <SCRIPT SRC=….>
• Identifying XHR calls
• Grabbing function
• Mapping function to DOM event
• Scanning code for XSS – look for eval()

and document.write()
Demo

Ajax serialization issues

• Ajax processing various information
coming from server and third party
sources. – XSS opportunities
message = {

from : "john@example.com",
to : "jerry@victim.com",
subject : "I am fine",
body : "Long message here",
showsubject :

function(){document.write(this.subject)}
};

XSS

Ajax serialization issues

• JSON issues

• JS – Array manipulation

{"bookmarks":[{"Link":"www.example.com","D
esc":"Interesting link"}]}

new Array(“Laptop”, “Thinkpad”, “T60”,
“Used”, “900$”, “It is great and I have
used it for 2 years”)

XSS and JS Exploitation

• JavaScript exploitation – XSS
• Identifying DOM points like

document.write()
• Eval() – another interesting point
• Attack APIs / BeEF tools for exploitation
• Lot can be done by an attacker from

session hijacking to key loggers

Countermeasures

• Client side code audit is required.
• XHR calls and DOM utilization needs to be

analyzed.
• Content from un-trusted information sources

should be filtered out at proxy layer.
• Cross Domain Callback – careful.
• Browser side content validation before

consuming into DOM.

Cross Site Request Forgery
(CSRF)

• Generic CSRF is with GET / POST
• Forcefully sending request to the target

application with cookie replay
• Leveraging tags like

– IMG
– SCRIPT
– IFRAME

• Not abide by SOP or Cross Domain is
possible

Cross Site Request Forgery
(CSRF)

• What is different with Web 2.0
– Is it possible to do CSRF to XML stream
– How?
– It will be POST hitting the XML processing

resources like Web Services
– JSON CSRF is also possible
– Interesting check to make against

application and Web 2.0 resources

One Way CSRF Scenario

One Way CSRF Scenario

One Way CSRF Scenario

One Way CSRF Scenario

One-Way CSRF

Demo

One-Way CSRF
• <html>
• <body>
• <FORM NAME="buy" ENCTYPE="text/plain"

action="http://trade.example.com/xmlrpc/trade.rem"
METHOD="POST">

• <input type="hidden" name='<?xml version'
value='"1.0"?><methodCall><methodName>stocks.buy</metho
dName><params><param><value><string>MSFT</string></val
ue></param><param><value><double>26</double></value></p
aram></params></methodCall>'>

• </FORM>
• <script>document.buy.submit();</script>
• </body>
• </html>

Forcing XML

• Splitting XML stream in the form.
• Possible through XForms as well.
• Similar techniques is applicable to

JSON as well.

Two-Way CSRF

• One-Way – Just making forceful
request.

• Two-Way
– Reading the data coming from the target
– May be getting hold onto important

information – profile, statements, numbers
etc.

– Is it possible with JSON/XML

Two-Way CSRF

Two-Way CSRF

Demo

Two-Way CSRF

• Application is serving various streams
like – JSON, JS-Object, Array etc.

Two-Way CSRF

• Attacker page can make cross domain
request using SCRIPT (firefox)

• Following code can overload the array
stream.
function Array()
{ var obj = this; var index = 0; for(j=0;j<4;j++){
obj[index++] setter = spoof; } } function spoof(x){
send(x.toString()); }

Two-Way CSRF

Two-Way CSRF

• It is possible to overload these objects.
• Reading and sending to cross domain

possible.
• Opens up two way channel for an

attacker.
• Web 2.0 streams are vulnerable to

these attacks.

Countermeasure

• Server Side Checks
– Check for client’s content-type.
– XHR calls – xml/application.
– Native calls – text/html.
– Filtering is possible on it.

• Client Side Checks
– Stream can be started and terminated by /* or any

predefined characters.
– Client can remove them before injecting to DOM.

Web 2.0
Components Security

Web 2.0 Components

• There are various other components for
Web 2.0 Applications
– RSS feeds
– Mashups
– Widgets
– Blogs
– Flash based components

RSS feeds

• RSS feeds coming into application from
various un-trusted sources.

• Feed readers are part of 2.0
Applications.

• Vulnerable to XSS.
• Malicious code can be executed on the

browser.
• Several vulnerabilities reported.

RSS feeds

Demo

Mashups

• API exposure for Mashup supplier
application.

• Cross Domain access by callback may cause
a security breach.

• Confidential information sharing with Mashup
application handling needs to be checked –
storing password and sending it across (SSL)

• Mashup application can be man in the middle
so can’t trust or must be trusted one.

Widgets/Gadgets

• DOM sharing model can cause many
security issues.

• One widget can change information on
another widget – possible.

• CSRF injection through widget code.
• Event hijacking is possible – Common

DOM
• IFrame – for widget is a MUST

Blogs

• Blogs are common to Web 2.0
applications.

• Many applications are plugging third
party blogs

• One needs to check these blogs – XSS
is common with blogging applications.

• Exceptions and Search are common
XSS points.

SOA and Web Services
- Backbone for Web 2.0

SOA Stack

Transport Stack
HTTP, HTTPS

Access Stack
WSDL,SOAP,XML-RPC,REST

Discovery Stack
UDDI, DISCO

Security Stack
WS-Security

Presentation Stack
XML,JSON,JS-* HTML / JS / DOM

RIA (Flash)

Ajax

Scanning SOA

Footprinting & Discovery

Enumeration & Profiling

Vulnerability Detection

Code / Config Scanning

Web Services Firewall

Secure Coding

Insecure Web Services

Secure Web Services

Blackbox Whitebox

Defense
&
Countermeasure

Footprinting and Discovery

• Objective: Discovering Web Services running
on application domain.

• Methods
– Primary discovery

• Crawling and spidering
• Script analysis and page scrubbing
• Traffic analysis

– Secondary discovery
• Search engine queries
• UDDI scanning

Primary Discovery

• Crawling the application and mapping file
extensions and directory structures, like
“.asmx”

• Page scrubbing – scanning for paths and
resources in the pages, like atlas back end
call to Web Services.

• Recording traffic while browsing and
spidering, look for XML based traffic – leads
to XML-RPC, REST, SOAP, JSON calls.

Getting from page

Demo

Primary Discovery

• Page scanning with grep – Look in
JavaScripts for URLs, Paths etc.

• Crawling – Simple!
• Scanning for Atlas references –

Framework creates stubs and proxy. –
scanweb2.0/scanatlas

• Urlgrep can be used as well.

Secondary Discovery

• Searching UDDI server for Web Services
running on particular domain.
– Three tactics for it – business, services or tModel.

• Running queries against search engines like
Google or MSN with extra directives like
“inurl” or “filetype”
– Look for “asmx”

• wsScanner – Discovery!

Fetching from search engines

Demo

Enumerating and Profiling
• Fingerprinting .Net framework and Client

side technologies – Dojo or Atlas …
• Scanning WSDL

– Looking for Methods
– Collecting In/Out parameters
– Security implementations
– Binding points
– Method signature mapping

Profiling / Invoking - Services

Demo

Scanning strategies
• Manual invocation and response analysis.
• Dynamic proxy creation and scanning.
• Auto auditing for various vectors.
• Fuzzing Web Services streams – XML or JSON
• Response analysis is the key

– Look for fault code nodes
– Enumerating fault strings
– Dissecting XML message and finding bits
– Hidden error messages in JSON

Injecting fault

Demo

Fuzzing XML/JSON

Demo

Injection Flaws

• Web Services methods are consuming
parameters coming from end users.

• It is possible to inject malicious characters
into the stream.

• It can break Web Services code and send
faultsting back to an attacker

• Various injections possible – SQL and
XPATH

Malicious File Execution

• Malicious command can be injected
through the parameter.

• WS supports attachments as well and
that can lead to uploading a file.

• This can give remote command
execution capability to the attacker.

Insecure Direct Object
Reference

• Injecting characters to break file system
sequences.

• Faultcode spits out internal information if not
protected.

• Customized error shows the file refernces.
• Access to internal file and full traversal to

directories
• Inspecting methods and parameters in the

profile stage can help.

Information Leakage and
Improper Error Handling

• SOAP based Web Services throws faultcode
and faultstrings back to the client.

• Information can be embedded in it.
• It try/catch is not well implemented then

default error from .NET framework.
• Published vulnerabilities with leakage

information providing references to file, ldap,
etc.

Failure to Restrict URL
Access

• In Web Services instead of URL – methods.
• WSDL scanning and disclosures can weaken

the Services.
• Some internal methods are out in public.
• Admin APIs can be accessed.
• These internal methods can be used to attack

Web Services.

Defending Web 2.0
with WAF & Code Review

Code Analysis for Web 2.0

• Scanning the code base.
• Identifying linkages.
• Method signatures and inputs.
• Looking for various patterns for SQL, LDAP,

XPATH, File access etc.
• Checking validation on them.
• Code walking and tracing the base - Key

Demo

• Regular firewall will not work
• Content filtering on HTTP will not work either

since it is SOAP/JSON over HTTP/HTTPS
• SOAP/JOSN level filtering and monitoring

would require
• ISAPI level filtering is essential
• SOAP/JSON content filtering through

IHTTPModule

Content filtering with 2.0

HTTP Stack for .Net (IIS6/7)
HttpRuntime

HttpApplicationFactory

HttpApplication

HttpHandlerFactory

IHttpModule

Handler

Web Application
Firewall
& IDS

148

IHTTPModule based Firewall

• Code walkthrough – Events and Hooks
• Loading the DLL
• Setting up the rules
• Up and running!

Demo

Conclusion

• Web 2.0 bringing new challenges
• Needs to adopt new methodologies for

scanning
• Attacks and entry points are scattered

and multiple
• Ajax and SOA are key components
• WAF and Code review are important

aspects for Web 2.0 defense

Thanks!

http://shreeraj.blogspot.com
shreeraj@blueinfy.com
http://www.blueinfy.com

http://shreeraj.blogspot.com
shreeraj@blueinfy.com
http://www.blueinfy.com

